isomorphic spaces - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

isomorphic spaces - translation to ρωσικά

Computably isomorphic

isomorphic spaces      

математика

изоморфные пространства

topological pair         
INCLUSION OF TOPOLOGICAL SPACES
Pair of spaces; Pairs of spaces; Category of pairs of topological spaces

математика

пара топологических пространств

hyperbolic space         
  • E<sup>3</sup>]]''
HOMOGENEOUS SPACE THAT HAS A CONSTANT NEGATIVE CURVATURE (NOT ANY HYPERBOLIC MANIFOLD)
Hyperbolic 3-space; Real hyperbolic space; Hyperbolic Space; Hyperbolic spaces; Hyperbolic Spaces; H^n

математика

гиперболическое пространство

Ορισμός

Banach space
<mathematics> A complete normed vector space. Metric is induced by the norm: d(x,y) = ||x-y||. Completeness means that every Cauchy sequence converges to an element of the space. All finite-dimensional real and complex normed vector spaces are complete and thus are Banach spaces. Using absolute value for the norm, the real numbers are a Banach space whereas the rationals are not. This is because there are sequences of rationals that converges to irrationals. Several theorems hold only in Banach spaces, e.g. the {Banach inverse mapping theorem}. All finite-dimensional real and complex vector spaces are Banach spaces. Hilbert spaces, spaces of integrable functions, and spaces of {absolutely convergent series} are examples of infinite-dimensional Banach spaces. Applications include wavelets, signal processing, and radar. [Robert E. Megginson, "An Introduction to Banach Space Theory", Graduate Texts in Mathematics, 183, Springer Verlag, September 1998]. (2000-03-10)

Βικιπαίδεια

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.

Μετάφραση του &#39isomorphic spaces&#39 σε Ρωσικά